Abstract
This paper analytically studies the effect of radial engagement on chatter stability when the flexibility is perpendicular to the feed motion, with thin-walled part milling being the most relevant industrial case. By studying the mean directional factor and its harmonics, the superior stability of the up-milling strategy over down-milling for both Hopf and flip chatter is demonstrated. The optimal engagement for a theoretical infinite stable depth of cut Hopf is obtained, as well as the expressions for the critical depth of cut. For flip chatter, three different cutting zones with different lobe shapes can occur depending on the radial engagement. It is also shown that while flip chatter cannot be completely eliminated by tuning the radial engagement alone, an engagement can be found in up-milling that maximises stability. Finally, the findings are validated through experimental tests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: CIRP Journal of Manufacturing Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.