Abstract
The choice of the sampling locations in a spatial network is often guided by practical demands. In particular, many locations are preferentially chosen to capture high values of a response, for example, air pollution levels in environmental monitoring. Then, model estimation and prediction of the exposure surface become biased due to the selective sampling. Since prediction is often the main utility of the modeling, we suggest that the effect of preferential sampling lies more importantly in the resulting predictive surface than in parameter estimation. Our contribution is to offer a direct simulation-based approach to assessing the effects of preferential sampling. We compare two predictive surfaces over the study region, one originating from the notion of an 'operating' intensity driving the selection of monitoring sites, the other under complete spatial randomness. We can consider a range of response models. They may reflect the operating intensity, introduce alternative informative covariates, or just propose a flexible spatial model. Then, we can generate data under the given model. Upon fitting the model and interpolating (kriging), we will obtain two predictive surfaces to compare. It is important to note that we need suitable metrics to compare the surfaces and that the predictive surfaces are random, so we need to make expected comparisons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.