Abstract
The aim of the work was to investigate the effect of non-thermal plasma treatment of an ultra-thin polyethylene terephthalate (PET) film on changes in its physicochemical properties and biodegradability. Plasma treatment using a dielectric barrier discharge plasma reactor was carried out in air at room temperature and atmospheric pressure twice for 5 and 15 min, respectively. It has been shown that pre-treatment of the PET surface with non-thermal atmospheric plasma leads to changes in the physicochemical properties of this polymer. After plasma modification, the films showed a more developed surface compared to the control samples, which may be related to the surface etching and oxidation processes. After a 5-min plasma exposure, PET films were characterized by the highest wettability, i.e., the contact angle decreased by more than twice compared to the untreated samples. The differential scanning calorimetry analysis revealed the influence of plasma pretreatment on crystallinity content and the melt crystallization behavior of PET after soil degradation. The main novelty of the work is the fact that the combined action of two factors (i.e., physical and biological) led to a reduction in the content of the crystalline phase in the tested polymeric material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.