Abstract

We develop our earlier attempts to perform an indirect quantitative examination of the hypothesis that electric currents flowing up from thunderstorms to the ionosphere (also known as Wilson currents) charge the ionosphere to a large positive potential with respect to the Earth. First, we take the electrostatic potential arising from the interaction of the solar wind with the Earth’s magnetosphere derived from an experimental data-based model of the high-latitude field-aligned currents. We then obtain the global distribution of ionospheric potential, utilizing a thin shell model, based on integration along field lines of the current continuity equation with a realistic model of ionospheric conductivity. Next, we include additional upward currents to simulate the effect of the three main thunderstorm regions over equatorial Asia/Oceania, Africa and the Americas. We compare the local time variation of the eastward electric field in the ionosphere produced by these three equatorial sources separately, and seek to understand the substantial differences between them. Finally, we examine the variation with local time of the eastward electric field in the ionosphere at low latitudes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call