Abstract
The influence of low temperatures on the performance of a high-power single-frequency fiber laser amplifier is evaluated with a numerical simulation. Cooling the fiber can allow to take advantage of both higher damping of the acoustic waves in the silica glass, and higher laser efficiency. We first report on the measurement of the stimulated Brillouin scattering (SBS) threshold in a silica fiber as a function of the temperature from 300~K down to 77~K. We then present the measurements of small-signal absorption and gain spectra of an erbium doped alumino-phosphosilicate fiber, at room temperature and liquid nitrogen temperature. Based on these data, we derive a numerical study of the combined effects of cooling on the SBS threshold and the amplifier efficiency, and conclude on the interest of this technique for SBS limited high power Er doped fiber amplifiers (EDFA). The temperature increase caused by the pump laser in the fiber core is also addressed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.