Abstract

Low concentrations of alcohols have proven to be able to enlarge the stability curve of globular proteins, by decreasing the cold denaturation temperature and increasing the hot denaturation temperature [S. R. Martin, V. Esposito, P. De Los Rios, A. Pastore and P. A. Temussi, J. Am. Chem. Soc., 2008, 130, 9963-9970]. In order to try to explain these data, I have considered that: (1) an aqueous 2 M MeOH solution can be treated as a uniform liquid, constituted by water molecules, whose density, above the temperature of maximum density, has the same values of neat water, simply shifted by 2 °C toward lower temperatures, whereas, below the temperature of maximum density, it decreases to a slightly lesser extent than the density of neat water; (2) the ΔE(a)(2 M MeOH) quantity, a balance between intra-protein energetic attractions and those with the surrounding solvent molecules, both water and methanol, assumes a constant positive value. These physically-based assumptions, when inserted into the theoretical model developed to rationalize the occurrence of cold denaturation in neat water [G. Graziano, Phys. Chem. Chem. Phys., 2010, 12, 14245-14252], reproduce in a qualitatively correct manner the effect of low concentrations of alcohols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.