Abstract

In the present study we investigate the evolution of the microstructure of a 12% Cr tempered martensite ferritic steel under conditions of long-term aging and creep (823 K, 120 MPa, t R = 139,971 h). We show how subgrains coarsen, that the close correlation between carbides and subgrain boundaries loosens during long-term creep and that the frequency of small-angle boundaries increases. All these elementary deformation processes have been discussed in short-term creep studies. The present study shows that they also govern long-term creep. However, during long-term creep, precipitation and coarsening reactions occur that are not observed during short-term creep. Three types of particles (M 23C 6, VX and Laves-phase) were identified after long-term creep. M 23C 6 particles coarsen at constant volume fraction and establish their equilibrium concentration after 51,072 h; VX particles are stable; and the Laves-phase particles never reach thermodynamic equilibrium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.