Abstract
The polarization of a charged, dielectric, spherical particle with a hydrodynamically slipping surface under the influence of a uniform alternating electric field is studied by solving the standard model (the Poisson–Nernst–Planck equations). The dipole moment characterizing the strength of the polarization is computed as a function of the double layer thickness, the electric field frequency, the particle’s surface charge, and the slip length. Our studies reveal that two processes contribute to the dipole moment: ion transport inside the double layer driven by the electric field and the particle’s electrophoretic motion. The hydrodynamic slip will simultaneously impact both processes. In the case of a thick double layer, an approximate analytical expression for the dipole moment of a weakly charged particle with an arbitrary slip length and a small zeta potential ζ [normalized with the thermal voltage (∼25 mV)], accurate within O(ζ2), shows that the polarization is dominated by the particle’s electrophoretic motion and the enhancement of the polarization due to the hydrodynamic slip is primarily attributed to the enhancement of the electrophoretic mobility from the slip. In contrast, for a thin double layer, the dipole moment is governed by ion transport inside the double layer. Asymptotical analytical models conclude that the hydrodynamic slip has more complicated influence on the polarization. At the high-frequency range where the surface conduction is important, the dipole moment is predicted to increase for any zeta potential. On the contrary, at the low-frequency range where the bulk diffusion is significant, the enhancement of the dipole moment due to the slip is lost at large zeta potentials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.