Abstract

Wind tunnel experiments were conducted in a low-turbulence environment (Tu < 0:006%) on the stability of 3D boundary layers. The effect of two different distributions of discrete roughness elements (DREs) on crossfl ow vortices disturbances and their growth was eval uated. As previously reported, DREs are found to be an effective tool in modulating the behaviour of crossfl ow modes. However, the effect of 24μm DREs was found to be weaker than previously thought, possibly due to the low level of environmental disturbances here with. Preliminary results suggest that together with the height of the DREs and their spanwise spacing, their physical distribution across the surface also intimately affects the stability of 3D boundary layers. Finally, crossfl ow vortices are tracked along the chord of the model and their merging is captured. This phenomena is accompanied by a change in the critical wavelength of the dominant mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.