Abstract

Tetrapolar bioimpedance measurements on subjects have long been suspected of being affected by stray capacitance between the subjects' body and ground. This paper provides a circuit model to analyze that effect in the frequency range from 100Hz to 1MHz in order to identify the relevant parameters when impedance is measured by applying a voltage and measuring both the resulting current and the potential difference between two points on the surface of the volume conductor. The proposed model includes the impedance of each electrode and the input impedance of the differential voltage amplifier. When common values for the circuit parameters are assumed, the simplified model predicts: 1) a frequency-independent gain (scale factor) error; 2) inductive artifacts, that is, the measured impedance increases with increasing frequency and may include positive angle phases; and 3) resonance that can affect well below 1MHz. In addition to the stray capacitance to ground, relevant parameters that determine those errors are the capacitance of the "low-current" electrode and the input capacitance of the differential voltage amplifier. Experimental results confirm those theoretical predictions and show effects from several additional resonances above 1MHz that also depend on body capacitance to ground.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.