Abstract

We investigate the estimation of orbital parameters by least-χ2 Keplerian fits to radial velocity (RV) data using synthetic data sets. We find that while the fitted period is fairly accurate, the best-fit eccentricity and Mpsin i are systematically biased upward from the true values for low signal-to-noise ratio, K/σ 3, and a moderate number of observations, Nobs 60, leading to a suppression of the number of nearly circular orbits. Assuming intrinsic distributions of orbital parameters, we generate a large number of mock RV data sets and study the selection effect on the eccentricity distribution. We find that the overall detection efficiency only mildly decreases with eccentricity. This is because although high-eccentricity orbits are more difficult to sample, they also have larger RV amplitudes for fixed planet mass and orbital semimajor axis. Thus, the primary source of uncertainty in the eccentricity distribution comes from biases in Keplerian fits to detections with low-amplitude and/or small Nobs, rather than from selection effects. Our results suggest that the abundance of low-eccentricity exoplanets may be underestimated in the current sample, and we urge caution in interpreting the eccentricity distributions of low-amplitude detections in future RV samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.