Abstract

We use new high-resolution HI data from the Australian Square Kilometre Array Pathfinder (ASKAP) to investigate the dynamics of the Small Magellanic Cloud (SMC). We model the HI gas component as a rotating disc of non-negligible angular size, moving into the plane of the sky and undergoing nutation/precession motions. We derive a high-resolution (~ 10 pc) rotation curve of the SMC out to R ~ 4 kpc. After correcting for asymmetric drift, the circular velocity slowly rises to a maximum value of Vc ~ 55 km/s at R ~ 2.8 kpc and possibly flattens outwards. In spite of the SMC undergoing strong gravitational interactions with its neighbours, its HI rotation curve is akin to that of many isolated gas-rich dwarf galaxies. We decompose the rotation curve and explore different dynamical models to deal with the unknown three-dimensional shape of the mass components (gas, stars and dark matter). We find that, for reasonable mass-to-light ratios, a dominant dark matter halo with mass M(R<4 kpc) = 1-1.5 x 10^9 solar masses is always required to successfully reproduce the observed rotation curve, implying a large baryon fraction of 30%-40%. We discuss the impact of our assumptions and the limitations of deriving the SMC kinematics and dynamics from HI observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.