Abstract

We consider the exponential matrix representing the dynamics of the Fermi–Bose model in an undepleted bosonic field approximation. A recent application of this model is molecular dimers dissociating into its atomic compounds. The problem is solved in D spatial dimensions by dividing the system matrix into blocks with generalizations of Hankel matrices, here referred to as D-block-Hankel matrices. The method is practically useful for treating large systems, i.e. dense computational grids or higher spatial dimensions, either on a single standard computer or a cluster. In particular the results can be used for studies of three-dimensional physical systems of arbitrary geometry. We illustrate the generality of our approach by giving numerical results for the dynamics of Glauber type atomic pair correlation functions for a non-isotropic three-dimensional harmonically trapped molecular Bose–Einstein condensate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.