Abstract
Abstract Barotropic simulations of the East African jet are extended to include the Arabian Sea branch of the flow and to allow for flow over the mountains of Africa. Large-scale mass source-sink forcing, present to the east of the model orography, drives the low-level circulation. Many features of the southeast trades, cross-equatorial flow and southwest monsoon are simulated. Among them are the separation of the jet from the African highlands, a wind speed maximum over the Arabian Sea and a reinforcement of the southwest monsoon by the Arabian northerlies. Splitting of the jet over the Arabian Sea is not simulated. Starting from a state of rest, a well-developed southwest monsoon is achieved in a week of simulated time. Inclusion of a prescribed Southern Hemisphere midlatitude disturbance excites a significant response in the cross-equatorial flow, even though flow is permitted over the African mountains. Downstream, the surges excite a response over both the Arabian Sea and the Bay of Bengal. The bay r...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.