Abstract

This article examines the third-order non-linear fractional Westervelt model by using a newly developed integration tool termed the new extended direct algebraic approach. The different wave structures to the considered model are secured in various forms, including bright, dark, and combo solitons. The application of wave structures is advantageous in the examination of sound wave propagation and high amplitude phenomena in the fields of medical imaging and therapy. These solutions are effective in facilitating ultrasound propagation in tissue, underwater acoustics, acoustic cavitation, acoustic levitation, and other related applications. The internal tissue of human beings can be visualized and studied through the use of ultrasound imaging technologies in the field of medicine. This technology possesses numerous uses in both industrial and medicinal sectors. There has been a growing interest in fractional nonlinear partial differential equations due to their ability to describe various complex occurrences and exhibit more dynamic architectures of localized wave solutions. On employing accurate parameter values, multiple graphical representations are generated to provide the visual depiction of the acquired results. The results of this study indicate that the chosen methodology effectively improves nonlinear dynamical processes. The findings indicate that the selected methodology demonstrates efficacy, feasibility, and versatility when applied to intricate systems across several domains, with a special emphasis on ultrasonic imaging. The findings indicate that the system exhibits a potentially significant abundance of soliton structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.