Abstract

The dynamics of a simple perching manoeuvre are investigated using circular and aspect-ratio-two elliptical flat plates, as abstractions of low-aspect-ratio planforms observed in highly-manoeuvrable birds. The perching kinematic investigated in this study involves a pitch-up motion from an angle of attack of to , while simultaneously decelerating. This motion is defined by the shape change number, , which acts as a measure of the relative contributions of added-mass and circulatory effects. This motion has been observed in natural flyers during controlled landings, and has recently been explored through the use of a nominally two-dimensional airfoil. The parameter space of low-aspect-ratio plates therefore serves to elucidate how realistic free-end conditions affect the timescales of vortex evolution, and therefore the relative contributions between added mass and circulation. The results presented herein suggest that for the low-aspect-ratio plates, the shedding of vortices occurs more rapidly than for equivalent two-dimensional cases, and therefore faster pitching motions are required to compensate for the lower levels of lift and drag. Furthermore, the vortex topology and instantaneous forces that arise during the rapid-area changes show no sensitivity to aspect ratio, and strong collapse is observed between both flat plates. Similar aerodynamic advantages may therefore be exploited during perching manoeuvres by birds of various scale regardless of wing aspect ratio.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call