Abstract

Abstract We present an analytical model to investigate the production of pebbles and their radial transport through a protoplanetary disk (PPD) with magnetically driven winds. While most of the previous analytical studies in this context assumed that the radial turbulent coefficient is equal to the vertical dust diffusion coefficient, in the light of the results of recent numerical simulations, we relax this assumption by adopting effective parameterizations of the turbulent coefficients involved, in terms of the strength of the magnetic fields driving the wind. Theoretical studies have already pointed out that even in the absence of winds, these coefficients are not necessarily equal, though how this absence affects pebble production has not been explored. In this paper, we investigate the evolution of the pebble production line, the radial mass flux of the pebbles, and their corresponding surface density as a function of the plasma parameter at the disk midplane. Our analysis explicitly demonstrates that the presence of magnetically driven winds in a PPD leads to considerable reduction of the rate and duration of the pebble delivery. We show that when the wind is strong, the core growth in mass due to the pebble accretion is so slow that it is unlikely that a core could reach a pebble isolation mass during a PPD lifetime. When the mass of a core reaches this critical value, pebble accretion is halted due to core-driven perturbations in the gas. With decreasing wind strength, however, pebble accretion may, in a shorter time, increase the mass of a core to the pebble isolation mass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.