Abstract

Two decades ago, it was shown that ambient noise exhibits low dimensional chaotic behavior. Recent new techniques in nonlinear science can effectively detect the underlying dynamics in noisy time series. In this paper, the presence of low dimensional deterministic dynamics in ambient noise is investigated using diverse nonlinear techniques, including correlation dimension, Lyapunov exponent, nonlinear prediction, and entropy based methods. The consistent interpretation of different methods demonstrates that ambient noise can be best modeled as nonlinear stochastic dynamics, thus rejecting the hypothesis of low dimensional chaotic behavior. The ambient noise data utilized in this study are of duration 60 s measured at South China Sea.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.