Abstract

Size-dependent dynamic responses of small-size frames are modelled by stress-driven nonlocal elasticity and assessed by a consistent finite-element methodology. Starting from uncoupled axial and bending differential equations, the exact dynamic stiffness matrix of a two-node stress-driven nonlocal beam element is evaluated in a closed form. The relevant global dynamic stiffness matrix of an arbitrarily-shaped small-size frame, where every member is made of a single element, is built by a standard finite-element assembly procedure. The Wittrick–Williams algorithm is applied to calculate natural frequencies and modes. The developed methodology, exploiting the one conceived for straight beams in [International Journal of Engineering Science 115, 14–27 (2017)], is suitable for investigating free vibrations of small-size systems of current applicative interest in Nano-Engineering, such as carbon nanotube networks and polymer-metal micro-trusses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.