Abstract

A high-resolution (∼1 km horizontal grid and 21 vertical layers) numerical model based on the Princeton Ocean Model (POM) has been used to study the 3D dynamics of the Upper Gulf of Thailand (UGOT). While influenced by tides and rivers like other estuarine systems, the UGOT is unique because it is wide (∼100 km × 100 km), it is shallow (average depth of only ∼15 m), it is located in low latitudes (∼12.5°N–13.5°N), and it is influenced by the seasonal monsoon. Sensitivity studies were thus conducted to evaluate the impact that surface heat fluxes, monsoonal winds, river runoffs, and the low latitude may have on the dynamics; the latter has been evaluated by modifying the Coriolis parameter and comparing simulations representing low and mid latitudes. The circulation in the UGOT changes seasonally from counter-clockwise during the northeast monsoon (dry season) to clockwise during the southwest monsoon (wet season). River discharges generate coastal jets, whereas river plumes tend to be more symmetric near the river mouth and remain closer to the coast in low latitudes, compared with mid-latitude simulations. River plumes are also dispersed along the coast in different directions during different stages of the monsoonal winds. The model results are compared favorably with a simple wind-driven analytical estuarine model. Comparisons between an El Nino year (1998) and a La Nina year (2000) suggest that water temperatures, warmer by as much as 2 °C in 1998 relative to 2000, are largely driven by decrease cloudiness during the El Nino year. The developed model of the UGOT could be used in the future to address various environmental problems affecting the region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.