Abstract

Theoretical investigations into the capabilities of a coaxial inertial drive with various operating modes for vibratory conveyors and screens are conducted in the paper. The coaxial inertial exciter is designed with one asynchronous electric motor and the kinematically synchronized rotation of two unbalanced masses. Three variants of angular speeds ratios, namely ω2/ω1 = 1, ω2/ω1 = –1, and ω2/ω1 = 2, are considered. Based on these relations, the circular, elliptical, and complex motion trajectories of the working members are implemented. In the first two cases, single-frequency harmonic oscillations take place. In the latter case, the double-frequency periodic oscillations are excited. The dynamic behavior of the motor’s shaft during its running-up and running-out is considered. The influence of the inertial parameters of the unbalanced rotors and the relative phase shift angle between them on the elliptical trajectories of the vibratory system’s mass center motion is investigated. The use of forced kinematic synchronization provides the motion stability of the vibratory system for all considered working regimes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.