Abstract

This article deals with the issues of global-in-time existence and asymptotic analysis of a fluid–particle interaction model in the so-called bubbling regime. The mixture occupies the physical space Ω ⊂ R 3 which may be unbounded. The system under investigation describes the evolution of particles dispersed in a viscous compressible fluid and is expressed through the conservation of fluid mass, the balance of momentum and the balance of particle density often referred as the Smoluchowski equation. The coupling between the dispersed and dense phases is obtained through the drag forces that the fluid and the particles exert mutually by the action–reaction principle. We show that solutions exist globally in time under reasonable physical assumptions on the initial data, the physical domain, and the external potential. Furthermore, we prove the large-time stabilization of the system towards a unique stationary state fully determined by the masses of the initial density of particles and fluid and the external potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.