Abstract

The dynamical relevance of vortex tubes and vortex sheets in a wall-bounded supersonic turbulent flow at Mach numberM= 2 and Reynolds numberReθ≈ 1350 is quantitatively analysed. The flow in the viscous sublayer and in the buffer region is characterized by intense, elongated vorticity tongues forming a shallow angle with respect to the wall, whose characteristic length isO(200) wall units and whose size in the cross-stream direction isO(50) wall units. The formation of vortex tubes takes place starting fromy+≈ 10, and it is mainly associated with the roll-up and the interaction of vortex sheets. The analysis of the non-local dynamical effect of tubes and sheets suggests that the latter have a more important collective effect, being closely associated with low-speed streaks, and being responsible for a substantial contribution to the mean momentum balance and to the production of turbulence kinetic energy and enstrophy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.