Abstract

In this work, viable models of cysteine dioxygenase (CDO) and its complex with l-cysteine dianion were built for the first time, under strict adherence to the crystal structure from X-ray diffraction studies, for all atom molecular dynamics (MD). Based on the CHARMM36 FF, the active site, featuring an octahedral dummy Fe(II) model, allowed us observing water exchange, which would have escaped attention with the more popular bonded models. Free dioxygen (O2 ) and l-cysteine, added at the active site, could be observed being expelled toward the solvating medium under Random Accelerated Molecular Dynamics (RAMD) along major and minor pathways. Correspondingly, free dioxygen (O2 ), added to the solvating medium, could be observed to follow the same above pathways in getting to the active site under unbiased MD. For the bulky l-cysteine, 600 ns of trajectory were insufficient for protein penetration, and the molecule was stuck at the protein borders. These models pave the way to free energy studies of ligand associations, devised to better clarify how this cardinal enzyme behaves in human metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.