Abstract

BackgroundThe key role in the dynamic regulation of synaptic protein turnover belongs to the Fragile X Mental Retardation Protein, which regulates the efficiency of dendritic mRNA translation in response to stimulation of metabotropic glutamate receptors at excitatory synapses of the hippocampal pyramidal cells. Its activity is regulated via positive and negative regulatory loops that function in different time ranges, which is an absolute factor for the formation of chaotic regimes that lead to disrupted proteome stability. The indicated condition may cause a number of neuropsychiatric diseases, including autism and epilepsy. The present study is devoted to a theoretical analysis of the local translation system dynamic properties and identification of parameters affecting the chaotic potential of the system.ResultsA mathematical model that describes the maintenance of a specific pool of active receptors on the postsynaptic membrane via two mechanisms – de novo synthesis of receptor proteins and restoration of protein function during the recycling process – has been developed. Analysis of the model revealed that an increase in the values of the parameters describing the impact of protein recycling on the maintenance of a pool of active receptors in the membrane, duration of the signal transduction via the mammalian target of rapamycin pathway, influence of receptors on the translation activation, as well as reduction of the rate of synthesis and integration of de novo synthesized proteins into the postsynaptic membrane – contribute to the reduced complexity of the local translation system dynamic state. Formation of these patterns significantly depends on the complexity and non-linearity of the mechanisms of exposure of de novo synthesized receptors to the postsynaptic membrane, the correct evaluation of which is currently problematic.ConclusionsThe model predicts that an increase of “receptor recycling” and reduction of the rate of synthesis and integration of de novo synthesized proteins into the postsynaptic membrane contribute to the reduced complexity of the local translation system dynamic state. Herewith, stable stationary states occur much less frequently than cyclic states. It is possible that cyclical nature of functioning of the local translation system is its “normal” dynamic state.

Highlights

  • Existing views on the importance of a stable proteome for the formation of synaptic plasticity and associated learning and memory processes bring impairments in the local translation at the activated synapse to the fore as a cause of several neuropsychiatric diseases

  • We examined five parameters: hb and hx describe the complexity and nonlinearity of the Fragile X Mental Retardation Protein (FMRP) phosphorylation and exposure of the synthesized proteins to the membrane; kb and kx constants determine the maximum rate of signal-dependent FMRP phosphorylation and the rate of receptor synthesis and incorporation into the membrane; Ka parameter by definition determines the effect of glutamatergic receptors on activation of local translation

  • Disruption of the local translation control at synapse is associated with various neuropsychiatric diseases, including Autism spectrum disorders (ASD) [6, 7, 25, 26], epilepsy [4, 5], Parkinson’s and Alzheimer’s diseases [5, 27, 28], which are characterized by imbalanced synaptic plasticity and lead to changes in behavior, cognitive abilities and memory

Read more

Summary

Introduction

Existing views on the importance of a stable proteome for the formation of synaptic plasticity (see reviews: [1,2,3]) and associated learning and memory processes bring impairments in the local translation at the activated synapse to the fore as a cause of several neuropsychiatric diseases (e.g., autism, epilepsy). It has been theoretically shown that dynamic relationship between activation and suppression of local translation at glumatergic synapses in response to their activation may result in formation of complex dynamics of postsynaptic protein synthesis in the area of physiological functioning of this system, and, may impair proteome stability at the activated synapse [9]. As it turned out, peculiarities of the regulation of local translation associated with the activation of the mTOR signaling pathway determine the high chaotic potential of the system [9, 10]. The present study is devoted to a theoretical analysis of the local translation system dynamic properties and identification of parameters affecting the chaotic potential of the system

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call