Abstract
Slug flow through flexible risers is a frequent phenomenon which occurs during production of a mixture of oil and gas. The dynamic nature of the slug pattern induces time varying forces, which leads to structural vibrations of the riser. These vibrations can produce large deflections and stresses, which can leave it to fail by fatigue, excessive bending or local buckling. In this work the influence from slug flow on the structural dynamic response of a lazy wave flexible riser is analyzed using a computational tool consisting of one program for calculation of slug flow dynamics, and another program for structural dynamic response. Both programs apply a time integration method, and since slug flow will lead to dynamic motion response of the riser, and riser motion dynamics will influence slug flow dynamics, the two codes need to exchange information during the integration process. Information exchange is established by making a federation based on High Level Architecture (HLA). The federation is composed of SLUGIT and RISANANL. SLUGGIT is a two-phase flow code written in C++ which simulates dynamic slug flow through pipes and riser using a Lagrangian tracking model. RISANANL is a FORTRAN program for static and dynamic structural analysis of slender marine structures based on a finite element formulation. Using the HLA standard these two programs can carry out synchronized time integration and exchange information for each time step. In this work the structural analysis code accomplishes the dynamic response using a linear finite element (FE) formulation. Hence, forces from centripetal acceleration of the internal flow, relative velocity between the riser and surrounding water, and varying gravity of the pipe and content will be accounted for in the dynamic analysis. Displacements, stresses, internal pressure, and outlet flow rates of liquid and gas will be accounted for. The results encourage us to carry out a fully non-linear finite element analysis, in order to have a better understanding of the dynamic behaviour of flexible risers undergoing an unsteady internal two-phase flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.