Abstract
The reason for the higher dynamic grain growth rate compared to static rate is considered with focus on the results by Nied and Wadsworth on 3 mole% yttria-stabilized zirconia (3 Y-TZP). Included is a review of the models and theories of the pertinent grain growth kinetics and on the concurrent grain boundary cavitation. It is concluded that the same physical mechanism governs both dynamic and static grain growth, and that the existing grain size is an important factor in both cases. It is further concluded that the major factor responsible for the higher dynamic grain growth rate is the pre-exponential in the Arrhenius-type grain growth kinetics equation, the entropy corresponding to the atomic diffusion being an important parameter. There exists insufficient information to ascertain the influence of grain boundary cavitation on the concurrent dynamic grain growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.