Abstract

Recent studies have shown that semi-aeroelastic hinge devices can enable larger aircraft wingspans. Such a device would be folded on the ground to meet airport width restrictions, locked during cruise for optimal aerodynamic performance, and released during maneuvers to alleviate flight loads. In contrast, this paper uses a wind tunnel experiment to study the aeroelastic behavior of floating wingtip fuel tanks. This device consists of a freely floating wingtip with an additional mass attached in the form of a liquid-filled fuel tank. The static aeroelastic results show that altering the fuel tank’s filling level and position allows the wingtip to float at an optimal angle for aerodynamic efficiency across various angles of attack and fuel masses. Additionally, this paper shows that, with careful selection of the mass distribution of the wingtip, dynamic load alleviation comparable to the semi-aeroelastic hinge concept can be achieved during turbulence and one-minus-cosine encounters. Furthermore, the effect of fluid motion is shown to reduce incremental loads during random turbulence encounters by up to 10%; however, it has a negligible impact on the response to one-minus-cosine encounters. Such results are also confirmed by a numerical model incorporating a simple reduced-order fluid sloshing model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call