Abstract
The development of offshore wind farms requires robust bonding solutions that can withstand harsh marine conditions for the easy integration of secondary structures. This paper investigates the durability performance of two adhesives: Sikadur 30 epoxy resin and Loctite UK 1351 B25 urethane-based adhesive for use in offshore wind environments. Tensile tests on adhesive samples and accelerated aging tests were carried out under a variety of temperatures and environmental conditions, including both dry and wet conditions. The long-term effects of aging on adhesive integrity are investigated by simulating the operational life of offshore installations. The evolution of mechanical properties, studied under accelerated aging conditions, provides an important indication of the longevity of structures under normal conditions. The results show significant differences in performance between the two adhesives, highlighting their suitability for specific operating parameters. It should also be noted that for both adhesives, their exposure to different environments (seawater, distilled water, humid climate) over a prolonged period showed that (i) Loctite adhesive has a slightly faster initial uptake than Sikadur adhesive, but the latter reaches an asymptotic plateau with a lower maximum absorption rate than Loctite adhesive; and (ii) a progressive deterioration in the tensile properties occurred following an exponential function. Therefore, aging behavior results showed a clear correlation with the Arrhenius law, providing a predictive tool for the aging process and the aging process of the two adhesives followed Arrhenius kinetics. Ultimately, the knowledge gained from this study is intended to inform best practice in the use of adhesives, thereby improving the reliability and sustainability of the offshore renewable energy infrastructure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.