Abstract
In plane elasticity the solutions of the stress field of rigid inclusion problems yield the solutions of cavity problems loaded by uniform shear tractions σ = 2μ (Ω − ω0) |κ = −1 where Ω is the rotation of the inclusion and ω0 the rotation of the material (evaluated at κ = −1, κ being the Kolosov constant). It is proved that if the limit of the stress field for the inclusion problem exists at κ = −1, then it corresponds to a constant rotation field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.