Abstract

The duality theorem for Coleff-Herrera products on a complex manifold says that if $f = (f_1,\dots,f_p)$ defines a complete intersection, then the annihilator of the Coleff-Herrera product $\mu^f$ equals (locally) the ideal generated by $f$. This does not hold unrestrictedly on an analytic variety $Z$. We give necessary, and in many cases sufficient conditions for when the duality theorem holds. These conditions are related to how the zero set of $f$ intersects certain singularity subvarieties of the sheaf $\mathcal{O}_Z$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.