Abstract

We prove a recent conjecture on the duality relation for correlation functions of the Potts model for boundary spins of a planar lattice. Specifically, we deduce the explicit expression for the duality of the n-site correlation functions, and establish sum rule identities in the form of the M\"obius inversion of a partially ordered set. The strategy of the proof is by first formulating the problem for the more general chiral Potts model. The extension of our consideration to the many-component Potts models is also given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.