Abstract

In this paper, we study the dual risk process in ruin theory (see e.g. Cramér, H. 1955. Collective Risk Theory: A Survey of the Theory from the Point of View of the Theory of Stochastic Processes. Ab Nordiska Bokhandeln, Stockholm, Takacs, L. 1967. Combinatorial methods in the Theory of Stochastic Processes. Wiley, New York and Avanzi, B., Gerber, H.U., Shiu, E.S.W., 2007. Optimal dividends in the dual model. Insurance: Math. Econom. 41, 111–123) in the presence of tax payments according to a loss-carry forward system. For arbitrary inter-innovation time distributions and exponentially distributed innovation sizes, an expression for the ruin probability with tax is obtained in terms of the ruin probability without taxation. Furthermore, expressions for the Laplace transform of the time to ruin and arbitrary moments of discounted tax payments in terms of passage times of the risk process are determined. Under the assumption that the inter-innovation times are (mixtures of) exponentials, explicit expressions are obtained. Finally, we determine the critical surplus level at which it is optimal for the tax authority to start collecting tax payments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.