Abstract
In this report, we present a dual crosslinking hydrogel fiber made from polyamine saccharides chitosan (CS), synthesized through UV polymerization. This process utilizes Irgacure 2959 and N,N′-Methylenebisacrylamide (MBAA) as initiators, followed by immersion in an aluminum chloride (AlCl3) solution. The resulting hydrogel incorporates a dual crosslinking mechanism, quantitatively studied via Nuclear Magnetic Resonance (NMR) spectroscopy. This mechanism involves chemical crosslinking through radical graft polymerization of acrylamide and acrylic acid onto CS in the presence of MBAA, and physical crosslinking through hydrogen bonding interactions between P(AAm-co-AA) and a metal coordination bond. The mechanical properties of the hydrogel fiber enable it to withstand stresses up to 656 kPa and strains exceeding 300 %. Additionally, the hydrogel fiber exhibits conductivity at 1.96 Scm−1. Serving as a multifunctional material, it acts as a strain sensor and finds utility in optics. Remarkably, it demonstrates the capability to detect human motions such as finger bending and minor deformations like vibrations of the vocal cords. Furthermore, its ability to guide dynamic light makes it promising for optical applications. Consequently, this multifunctional hydrogel fiber emerges as a highly promising candidate for diverse applications in fields such as bioengineering and electronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.