Abstract
AbstractData from a network of micrometeorological instruments, mostly mounted 10 m above the roofs of 12 buildings in Washington, D.C., are used to derive average values and spatial differences of the normalized local friction velocity u*/u ≡ ()1/2/u (with u being the wind speed reported at the same height as the covariance is measured, w being the vertical wind component, primes indicating deviations, and the overbar indicating averaging). The analysis is extended through consideration of two additional sites in New York City, New York. The ratio u*/u is found to depend on wind direction for all locations. Averaged values of u*/u appear to be best associated with the standard deviation of local building heights, with little evidence of a dependence on any other of the modern building-morphology indices. Temperature covariance data show a large effect of nearby activities, with the consequences of air-conditioning systems being obvious (especially at night) in some situations. The Washington data show that older buildings, built largely of native limestone, show the greatest effects of air-conditioning systems. The assumption that the nighttime surface boundary layer is stable is likely to be most often incorrect for both Washington and New York City—the sensible heat flux resulting from heating and cooling of building work spaces most often appears to dominate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.