Abstract
Abstract : The problem of calculating the frequency of the wave scattered by a body moving in a medium is formulated from field-theoretic considerations. The Doppler equation for a homogeneous dispersive medium is obtained on the basis of the fact that the frequency and the wave vector of a plane wave form a 4-vector. It is found that the solutions of the Doppler equation can be classified into two kinds. In one the solutions are close to the frequency of the incident wave. In the other kind they appear near the poles of the refractive index of the medium on the omega-axis. In the case of an isotropic plasma, the mono chromaticity of the incident wave is shown to be preserved after the wave is scattered by a moving body. However, in the case of a magneto-active plasma, the scattered wave contains more than one frequency for a monochromatic incident wave. The physical interpretations of these frequencies are given. In an inhomogeneous medium the Doppler equation has to be derived from a dif ferent starting point. The crucial point of the derivation is to perform spectral decompositions of the transformed fields and then to apply, under the assumption of gradual inhomogeneity, the method of stationary phase to determine the critical points. (Author)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.