Abstract

Let $X_i(i = 0, 1, \cdots, p)$ be $(p + 1)$ independent and identically distributed nonnegative random variables each representing the $j$th order statistic in a random sample of size $n$ from a continuous distribution $G(x)$ of a nonnegative random variable. Let $G_{j,n}(x)$ be the cumulative distribution function of $X_i(i = 0, 1, \cdots, p)$. Consider the ratios $Y_i = X_i/X_0 (i = 1, 2, \cdots, p)$. The random variables $Y_i (i = 1, 2, \cdots, p)$ are correlated and the distribution of the maximum and the minimum is of interest in problems of selection and ranking for restricted families of distribution. The distribution-free subset selection rules using the percentage points of these order statistics are investigated in a companion paper by Barlow and Gupta (1969). In the present paper, we discuss the distribution of these statistics, in general, for any $G(x)$ and then derive specific results for $G(x) = 1 - e^{-x/\theta}, x > 0, \theta > 0$. Section 2 deals with the distribution of the maximum while Section 3 discusses the distribution of the minimum. Some asymptotic results are given in Section 4, while Section 5 describes the tables of the percentage points of the two statistics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.