Abstract

Let x(1) denote the square of the largest singular value of an n × p matrix X, all of whose entries are independent standard Gaussian variates. Equivalently, x(1) is the largest principal component variance of the covariance matrix $X'X$, or the largest eigenvalue of a p­variate Wishart distribution on n degrees of freedom with identity covariance. Consider the limit of large p and n with $n/p = \gamma \ge 1$. When centered by $\mu_p = (\sqrt{n-1} + \sqrt{p})^2$ and scaled by $\sigma_p = (\sqrt{n-1} + \sqrt{p})(1/\sqrt{n-1} + 1/\sqrt{p}^{1/3}$, the distribution of x(1) approaches the Tracey-Widom law of order 1, which is defined in terms of the Painlevé II differential equation and can be numerically evaluated and tabulated in software. Simulations show the approximation to be informative for n and p as small as 5. The limit is derived via a corresponding result for complex Wishart matrices using methods from random matrix theory. The result suggests that some aspects of large p multivariate distribution theory may be easier to apply in practice than their fixed p counterparts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.