Abstract

SummaryIn this paper, a linear viscoelastic system is considered where the viscoelastic force depends on the past history of motion via a convolution integral over an exponentially decaying kernel function. The free‐motion equation of this nonviscous system yields a nonlinear eigenvalue problem that has a certain number of real eigenvalues corresponding to the nonoscillatory nature. The quality of the current numerical methods for deriving those eigenvalues is directly related to damping properties of the viscoelastic system. The main contribution of this paper is to explore the structure of the set of nonviscous eigenvalues of the system while the damping coefficient matrices are rank deficient and the damping level is changing. This problem will be investigated in the cases of low and high levels of damping, and a theorem that summarizes the possible distribution of real eigenvalues will be proved. Moreover, upper and lower bounds are provided for some of the eigenvalues regarding the damping properties of the system. Some physically realistic examples are provided, which give us insight into the behavior of the real eigenvalues while the damping level is changing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.