Abstract
This paper builds upon our recent work which computed the moment generating function of the MIMO mutual information exactly in terms of a Painlev\'{e} V differential equation. By exploiting this key analytical tool, we provide an in-depth characterization of the mutual information distribution for sufficiently large (but finite) antenna numbers. In particular, we derive systematic closed-form expansions for the high order cumulants. These results yield considerable new insight, such as providing a technical explanation as to why the well known Gaussian approximation is quite robust to large SNR for the case of unequal antenna arrays, whilst it deviates strongly for equal antenna arrays. In addition, by drawing upon our high order cumulant expansions, we employ the Edgeworth expansion technique to propose a refined Gaussian approximation which is shown to give a very accurate closed-form characterization of the mutual information distribution, both around the mean and for moderate deviations into the tails (where the Gaussian approximation fails remarkably). For stronger deviations where the Edgeworth expansion becomes unwieldy, we employ the saddle point method and asymptotic integration tools to establish new analytical characterizations which are shown to be very simple and accurate. Based on these results we also recover key well established properties of the tail distribution, including the diversity-multiplexing-tradeoff.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.