Abstract

Abstract Airborne Doppler radar reflectivity data collected in hurricanes on the NOAA P-3 aircraft between 1997 and 2021 were parsed into different modes of precipitation: stratiform precipitation, shallow convection, moderate convection, and deep convection. Stratiform precipitation was the most frequent precipitation mode with 82.6% of all observed precipitation while deep convection was the most infrequent at 1.3%. When stratified by 12-h intensity change, intensifying TCs had a greater areal coverage of total convection in the eyewall compared to weakening and steady-state TCs. The largest difference in the azimuthal distributions in the precipitation modes was in deep convection, which was mostly confined to the downshear-left quadrant in weakening and steady-state hurricanes and more symmetrically distributed in intensifying hurricanes. For all intensity change categories, the most symmetrically distributed precipitation mode was stratiform rain. To build upon the results of a recent thermodynamic study, the precipitation data were recategorized for hurricanes experiencing deep-layer wind shear with either a northerly component or southerly component. Like intensifying storms, hurricanes that experienced northerly component shear had a more symmetric distribution of deep convection than southerly component shear storms, which had a distribution of deep convection that resembled weakening storms. The greatest difference in the precipitation distributions between the shear direction groups were in major hurricanes experiencing moderate (4.5–11 m s−1) wind shear values. Consistent with previous airborne radar studies, the results suggest that considering the distribution of deep convection and the thermodynamic distributions associated with differing environmental wind shear direction could aid TC intensity forecasts. Significance Statement This research investigates how the distribution of different types of precipitation are related to tropical cyclone (TC) intensity change. Even though deep convection—the tallest clouds—is the least frequent type of precipitation, it has the strongest relationship to intensity change with uniform distributions around the eyewall associated with intensification. Less significant relationships were noticed for shallower clouds and stratiform (lighter) rain. The study also analyzed how change in direction of the large-scale winds with height (wind shear) influences intensity change. When wind shear is northerly, there is a more symmetric distribution of deep convection compared to when wind shear is southerly. These relationships illustrate how wind shear direction influences TC convective structure and, in turn, TC intensity change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.