Abstract
We study the distances of vertices within cliques in a soft random geometric graph on a torus, where the vertices are points of a homogeneous Poisson point process, and far-away points are less likely to be connected than nearby points. We obtain the scaling of the maximal distance between any two points within a clique of size k. Moreover, we show that asymptotically in all cliques with large distances, there is only one remote point and all other points are nearby. Furthermore, we prove that a re-scaled version of the maximal k-clique distance converges in distribution to a Fréchet distribution. Thereby, we describe the order of magnitude according to which the largest distance between two points in a clique decreases with the clique size.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.