Abstract

The dissociation of the naphthalene radical cation has been reinvestigated here by a combination of tandem mass spectrometry and imaging photoelectron photoion coincidence spectroscopy (iPEPICO). Six reactions were explored: (R1) C(10)H(8)(•+) → C(10)H(7)(+) + H (m/z = 127); (R2) C(10)H(8)(•+) → C(8)H(6)(•+) + C(2)H(2) (m/z = 102); (R3) C(10)H(8)(•+) → C(6)H(6)(•+) + C(4)H(2) (m/z = 78); (R4) C(10)H(8)(•+) → C(10)H(6)(•+) + H(2) (m/z = 126); (R5) C(10)H(7)(+) → C(6)H(5)(+) + C(4)H(2) (m/z = 77); (R6) C(10)H(7)(+) → C(10)H(6)(•+) + H (m/z = 126). The E(0) activation energies for the reactions deduced from the present measurements are (in eV) 4.20 ± 0.04 (R1), 4.12 ± 0.05 (R2), 4.27 ± 0.07 (R3), 4.72 ± 0.06 (R4), 3.69 ± 0.26 (R5), and 3.20 ± 0.13 (R6). The corresponding entropies of activation, ΔS(‡)(1000K), derived in the present study are (in J K(-1) mol(-1)) 2 ± 2 (R1), 0 ± 2 (R2), 4 ± 4 (R3), 11 ± 4 (R4), 5 ± 15 (R5), and -19 ± 11 (R6). The derived E(0) value, combined with the previously reported IE of naphthalene (8.1442 eV) results in an enthalpy of formation for the naphthyl cation, Δ(f)H°(0K) = 1148 ± 14 kJ mol(-1)/Δ(f)H°(298K) = 1123 ± 14 kJ mol(-1) (site of dehydrogenation unspecified), slightly lower than the previous estimate by Gotkis and co-workers. The derived E(0) for the second H-loss leads to a Δ(f)H° for ion 7, the cycloprop[a]indene radical cation, of Δ(f)H°(0K) =1457 ± 27 kJ mol(-1)/Δ(f)H°(298K)(C(10)H(6)(+)) = 1432 ± 27 kJ mol(-1). Detailed comparisons are provided with values (experimental and theoretical) available in the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call