Abstract

Dispersion systems such as solutions, suspensions and composites are frequently studied in the field of graphene and two-dimensional materials. The rapid development of these materials demands comprehensive insight into their dispersion systems. Here we present an innovative and systematic investigation on the dispersion systems of graphene-like two-dimensional materials. It is found that different dispersion systems exhibit similar fundamental laws which can be described based on a Most Probable Percolation Threshold (MPPT) theory. Two-dimensional sheets contact with their neighboring ones at around their MPPT concentrations and thus lead to sudden changes in various properties of dispersion systems, such as liquid crystal behavior, viscosity, mechanical strength, electrical conductivity and thermal properties. Starting from the MPPT theory, six new strategic guidelines for the engineering of dispersion systems are established. Based on these studies, we find that, appropriate size, appropriate thickness, and appropriate concentration, are the keys to the success of 2dMs dispersion systems in practical applications, and the MPPT theory could tell where it is appropriate. These investigations provide new theories, methodologies and guidelines for the science, engineering and developments of graphene and two-dimensional materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.