Abstract

In this work, we consider the discretization of some nonlinear Fokker-Planck-Kolmogorov equations. The scheme we propose preserves the non-negativity of the solution, conserves the mass and, as the discretization parameters tend to zero, has limit measure-valued trajectories which are shown to solve the equation. This convergence result is proved by assuming only that the coefficients are continuous and satisfy a suitable linear growth property with respect to the space variable. In particular, under these assumptions, we obtain a new proof of existence of solutions for such equations. We apply our results to several examples, including Mean Field Games systems and variations of the Hughes model for pedestrian dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.