Abstract

ABSTRACT Both the Canadian Land Surface Scheme (CLASS) and the Soil, Vegetation, and Snow (SVS) land surface models employ a potentially problematic discretization of Richards equation for unsaturated vertical flow in the soil column. It is shown here that this discretization will always overestimate the vertical moisture gradient compared to a better-constructed first-order scheme, which under some circumstances could lead to erroneous moisture drawdown. The problem stems from an interpolation calculation on the irregularly spaced grids traditionally used by these models. While vanishing on uniform grids, this numerical error progressively worsens with increasing layer thickness differences. In this brief technical note a systematic method for developing first and higher order schemes on irregular, staggered grids is presented. To demonstrate the potential impact of the new first – order scheme, multi-year simulations of five FLUXNET sites are presented and discussed. A dramatic improvement in first layer soil moisture is found for two of the sites, which contributes to potentially significant differences in evapotranspiration. Higher order schemes are also possible but must be constructed carefully, in concert with a judicious choice of soil layer spacing in order to minimize discretization error. Given the extensive use of CLASS and SVS in Canadian environmental prediction systems, and the freedom with which users can specify soil layer thicknesses, it is recommended that modellers consider this issue carefully in their applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call