Abstract
One of the major challenges in the parameter-free approach to computational shape optimization is the avoidance of oscillating (i.e. non-smooth) boundaries in the optimal design trials. In order to achieve this, we investigate a method for regularization that corresponds to the discrete variant of the so-called traction method. In this approach, the design updates are generated in terms of a displacement field, which is obtained as the solution to an auxiliary boundary value problem that is defined on the actual design domain. The main idea herein is to apply fictitious nodal forces corresponding to the discrete sensitivity of the objective function. We propose an algorithm in which constraint functions will be taken into account by using an augmented Lagrangian formulation and a step-length control ensures a sufficient decrease condition in terms of the objective function within each iteration. We examine the benefits of the proposed regularization method on the basis of some numerical examples in comparison to an unregularized steepest-descent algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.