Abstract
The stability of minor component analysis (MCA) learning algorithms is an important problem in many signal processing applications. In this paper, we propose an effective MCA learning algorithm that can offer better stability. The dynamics of the proposed algorithm are analyzed via a corresponding deterministic discrete time (DDT) system. It is proven that if the learning rate satisfies some mild conditions, almost all trajectories of the DDT system starting from points in an invariant set are bounded, and will converge to the minor component of the autocorrelation matrix of the input data. Simulation results will be furnished to illustrate the theoretical results achieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.