Abstract
Recently A, Malcev has shown that the homogeneous space of a connected nilpotent Lie group G is the direct product of a compact space and an Euclidean-space and that the compact space of this direct decomposition is also a homogeneous space of a connected subgroup of G. Any compact homogeneous space M of a connected nilpotent Lie group is of the form where is a connected simply connected nilpotent group whose structure constants are rational numbers in a suitable coordinate system and D is a discrete subgroup of G.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.