Abstract

We have performed a high sensitivity observation of the UFO/BAL quasar APM 08279+5255 at z=3.912 with NOEMA at 3.2 mm, aimed at detecting fast moving molecular gas. We report the detection of blueshifted CO(4-3) with maximum velocity (v95\%) of $-1340$ km s$^{-1}$, with respect to the systemic peak emission, and a luminosity of $L' = 9.9\times 10^9 ~\mu^{-1}$ K km s$^{-1}$ pc$^{-2}$ (where $\mu$ is the lensing magnification factor). We discuss various scenarios for the nature of this emission, and conclude that this is the first detection of fast molecular gas at redshift $>3$. We derive a mass flow rate of molecular gas in the range $\rm \dot M=3-7.4\times 10^3$ M$_\odot$/yr, and momentum boost $\dot P_{OF} / \dot P_{AGN} \sim 2-6$, therefore consistent with a momentum conserving flow. For the largest $\dot P_{OF}$ the scaling is also consistent with a energy conserving flow with an efficiency of $\sim$10-20\%. The present data can hardly discriminate between the two expansion modes. The mass loading factor of the molecular outflow $\eta=\dot M_{OF}/SFR$ is $>>1$. We also detect a molecular emission line at a frequency of 94.83 GHz, corresponding to a rest frame frequency of 465.8 GHz, which we tentatively identified with the cation molecule $\rm N_2H^+$(5-4), which would be the first detection of this species at high redshift. We discuss the alternative possibility that this emission is due to a CO emission line from the, so far undetected, lens galaxy. Further observations of additional transitions of the same species with NOEMA can discriminate between the two scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.